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NOX enzymes are the major contributors in many oxidative damage related diseases. Unfortunately, at
present no specific NOX inhibitor is available. Here, we describe the discovery and development of novel
NOX4 inhibitors. Compound libraries were tested in a cell-based assay as a primary screen, monitoring
H,O, production. Twenty-four compounds inhibited Nox4 activity with low-micromolar ICs, values of
which three were selected for further drug development.

Introduction

It has been demonstrated that ROS are involved in diverse
biological processes including host defense, signal transduc-
tion, oxygen sensing, proliferation, apoptosis, and response to
mechanical strain. ROS generation of the vascular system has
been observed for a long time and is also known to play an
important role in the pathogenesis of vascular atherosclerosis,
inflammation, and fibrotic disorders.! In recent years, a num-
ber of ROS-producing NOX isoenzymes have been identified.
At present the NOX enzyme family counts seven members:
NOXI1-35, Duox 1 and 2.

There is no specific vascular NOX isoform but rather a
complex expression of different NOX isoforms in different
cells. In endothelial and vascular smooth muscle cells, NOX4
appears to be the most common and abundant isoform.>?
NOX4 expression is strongly correlated with total NOX acti-
vity and endothelial function in human coronary arteries.*
Oxidative excess in hypertensive patients leads to diminished
NO?® and correlates with the degree of impairment of endothe-
lium-dependent vasodilatation and with cardiovascular events.®
ROS also appears to be involved in the mediation of endothelial
injury leading to programmed cell death or apoptosis.” An
important precise strategy would be to achieve the specific
inhibition of NOX4, which is the major source of ROS in the
cardiovascular system, thus preventing CVDs.

It is known that numerous compounds from both nat-
ural and synthetic sources have NOX inhibitory effect such
as thiol-modifying compounds, endogenous compounds
(neopterin), natural compounds (norathyriol, gomisin C, abru-
quinone, magnolol, honokiol, prodigiosin, apocynin, gliotoxin)
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(Figure la), synthesized compounds (perhexiline), and arylio-
dinium compounds (DPI).® The iodinium-derived DPI is the
most commonly used NOX inhibitor. It is a nonspecific in-
hibitor of many flavoprotein dehydrogenases and a few heme
proteins acting by abstracting electron and forming a radical,
which then inhibits the electron transporter by a covalent
binding step.”

1(S17834),1° 2,11 3,12 4,3 and 5 (VAS2870)'*® are inhibitors
developed by different pharmaceutical companies (Figure 1b). 5
inhibits oxLDL -induced superoxide release from human endo-
thelial cells."”® Enhanced vascular formation of ROS in response
to oxLDL has been described in several studies i vitro and in vivo.

Another group of synthetic NOX inhibitors are statins,
widely used drugs to treat CVDs, which have an indirect NOX
inhibitory action by inhibiting the small G-protein Rac iso-
prenylation.'®

Although it seems to be a good and validated target so far,
there is no potent and specific NOX4 inhibitor available.
In this study we present hit selection, development, and bio-
logical characterization of novel NOX4 inhibitors.

Results and Discussion

Transfected free-style 293 F HEK cell line is the basis of the
cellular assay which overexpresses the constitutively H,O,-
producing NOX4 enzyme. The Western blot analysis using
rabbit polyclonal NOX4 antibody showed increased NOX4
expression in the transfected HEK 293 FS cell line (Figure 2a).
The H,O, production of the transfected HEK 293 FS cell line
was confirmed by using Amplex Red assay (Figure 2b). The
detection is based on the indirect measurement of the quantity
of H>O, produced. The LPO enzyme produces 0,0’-dityrosine
in the presence of H,O, and L-tyrosine (Figure 2c). The quan-
tity of the 0,0'-dityrosine can be measured by a spectrofluoro-
metric plate reader.

We tested ~1000 compounds from our ML at 10 uM in
the H,O,/Tyr/LPO cellular assay for NOX4 inhibition. A
total of 73 compounds proved to be effective, resulting in
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Figure 1. Structures of natural (a) and synthetic (b) compounds with proven NOX inhibitor activity.
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Figure 2. Detection and comparison of NOX4 expression in the transfected and nontransfected HEK 293 FS (control) cell lines by Western
blot analysis. (a) Detection of NOX4 activity in the transfected and control HEK 293 FS cell lines, using the Amplex Red hydrogen peroxide/
peroxidise assay. (b) Fluorescence was measured with photometric microplate spectrofluorometer using excitation at 551 £ 10 nm and emission
at 590 £ 20 nm (b). (¢) Indirect measurement of H,O, production in H,O,/Tyr/LPO assay. The LPO enzyme produces o,0’-dityrosine in the
presence of H,O, and r-tyrosine. Dityrosine has distinct fluorescent properties. In the presence of H,O, (produced by NOX4 enzyme) the
increasing fluorescence intensity can be detected by spectrofluorometric plate reader.

high (between 80% and 100%) NOX4 inhibition compared
to the effect of DPI, which is a highly effective but non-
specific NOX inhibitor. Most of the 73 inhibitors belong to
the following five core structures: oxalyl hydrazides, flavo-
noids, oxindols, benzoquinolines, benzothiophenes.

The most potent compounds that showed better than 80%
inhibition at a dose of 10 uM were selected to determine their
ICs in the same cellular assay. The inhibitory properties of
23 selected compounds (with ICs less than 2 uM) are shown in
Table la. Most of the selected 23 hit compounds are phenan-
tridinone, flavonoid, aminosalicylic acid, oxindole, oxalyla-
mide, or benzo[4,5]thieno[3,2-d|pyrimidine derivatives.

On the basis of the search of core structure similarities
between the previously identified 23 hit molecules (Table 1a),
we selected 200 analogues from the groups of oxalyl hydra-
zides, flavonoids, and benzothiophenes with different func-
tional groups and tested them. Table 1b shows the inhibitory
properties of the hit compounds from the sublibraries.

Flavonoids (7a'’—o) were the most potent inhibitors, which
had submicromolar ICs,. As Table 1b shows, we have identi-
fied numerous effective compounds (7b, 7d, 7e, 7g,'®'® 7h)
among the flavonoid derivatives. On the basis of the above
results, the selected most effective NOX4 inhibitors belong to
the following core structures (Figure 3).

Phenantridinone Derivatives (6a—h). To be active, phenan-
thridinone derivatives seem to need four hydroxy groups.
However in addition to hydroxy groups there needs to be one
electron withdrawing group (NO,, CN) on the benzylic
moiety (6a, 6b, 6¢, 6d°°). Methylation of hydroxy groups
resulted in a loss of activity.

Flavonoids. The most active compound 7a contains five
hydroxy groups. One or more of these hydroxy groups are
placed in another position or replaced by a hydrogen or a
methoxy in the tested derivatives which affected the activity.
In 7a, 7h, changing the position of one hydroxy group (meta
R*—R? instead of ortho) decreased the activity. In 7a, 7e the
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Table 1. Inhibitory Properties of (a) the Most Potent Compounds, Selected for Further Investigation after Primary Screen, and (b) the Derivatives of
Newly Identified Hit Compounds in Section a

compd inh (%) in 10 uM £ 95% CI ¢ ICso (uM) = 95% CI” inh (%)“ inh of cell viability (%)“
(a) Inhibitory Properties of the Most Potent Compounds
6a 104 + 3 0.17 £ 0.03 —4.8 90.56
6b 101 +£3 0.26 £ 0.01 —4.9 112.28
6¢ 97+3 0.59 +0.36 4.8 107.56
6d 93 +£8 1.58 £+ 0.66 —6.11 107.94
6e 95+2 1.58 £ 0.71 —1.05 11291
Ta 94 +6 0.68 £ 0.48 —2.64 102.52
Tc 86+ 5 0.79 +0.05 6.09 98.85
8a 89+9 0.96 +0.13 5.35 101.46
8b 91+38 1.27 +0.03 3.83 106.39
8¢’ 82+ 7 1.34 +£0.48 72.4 88.71
9a/ 102+ 4 0.63 +0.61 —0.88 18.69
9b 100 + 1 1+0.17 —2.94 97.71
9¢ 102+ 4 1.13+0.46 0.39 123.23
9d 104 +£ 8 1.4+£0.42 —5.16 111.6
10c 105+ 7 1.16 £ 0.71 7.6 99.51
10b 96 + 10 1.02 £ 0.54 17.42 93.16
11a 98 +9 0.24 +0.14 17.91 105.56
11/ 101 £ 1 1.07 4+ 0.48 —2.78 60.51
12 100 £ 8 0.46 + 0.05 —3.94 99.86
13/ 108 +9 0.5240.15 —1.15 20.14
14/ 103 42 0.63 4 0.41 -0.53 77.52
15¢ 91 +£ 11 1.04 £0.14 90.71 g
16 100 £ 3 1.35+0.21 —5.02 95.71
(b) Inhibitory Properties of Derivatives of Hit Compounds in Section a
7b 100 £ 1 0.74 +0.14 3.17 120.69
7d 105+1 0.83 +£0.12 —1.86 104.63
Te 106 £ 1 0.85+0.31 —4.47 110.36
7t 88 £ 12 1.02 £0.75 4341 g
78 105+ 1 1.13+0.68 -1.2 107.54
7h 105+2 1.2+0.27 2.09 118.71
10a’ 103+ 3 0.91 +0.09 —4.58 67.17
10d 104 + 1 1.3+£0.19 -3.3 82.36
10¢” 104 £2 1.64 +0.78 -3.5 74.9
17 101 +2 1.16 + 1.05 —0.59 85.02
18/ 102+0 1.27 £ 0.53 —0.64 63.36

“All the inhibitory compounds were tested first in H,O,/Tyr/LPO cellular assay at a dose of 10 uM. Most of them reached their maximal NOX4
inhibition at this concentration.  The ICs, values for NOX4 enzyme were estimated by H>0,/Tyr/LPO cellular assay, with an eight-point curve using a
!/, dilution series from 10 to 0.078 M inhibitor. ¢ To identify the redox active small molecules, in the H,O, assay the HEK 293 FS cells of the H,O,/Tyr/
LPO cellular assay were substituted with 3 «M H,0,. The hit compounds were tested in 10 %M final concentration. ¢ The inhibition of cell viability was
determined by luminescent cell viability assay kit in the presence of 10 uM inhibitory compounds. Cells were incubated with the inhibitors for 72 h. The
inhibitory values in the H,O, assay and the cell viability assay are represented as the percentage of live cells. The H>O, production of NOX4-expressing
cells was (8.4 nmol/10° cells)/h. ¢ False positive data. The % inhibition of the compound is higher than 25% in the H,O» assay.” False positive data. The
% inhibition of the compound is higher than 20% in the luminescent cell viability assay. * Not tested.

replacement of one hydroxy group by a hydrogen at position

group next to the hydroxy function spoiled the activity (9i).
R’ did not really influence the activity. However, significant

However in 9¢ and 9d the substitution of indolinone core was

decrease can be observed replacing two hydroxy groups by
hydrogen in 7a, 7g. Similarly methylation of one hydroxy
group seems to be tolerable, but compounds containing two
or more methoxy goups are significantly less active than the
corresponding hydroxy derivatives. This effect is indepen-
dent of the position of the methoxy goups.

Aminosalicylic Acid Derivatives (8a—c).”' All of the tested
hit compounds 8a,b were found active. The activity is slightly
decreased by introduction of additional hydroxy groups,
and at the same time, a free carboxylic group seems to be
beneficial.

Oxindole Derivatives (9a—i). The most active compound
contains a 3,4,5-trisubstituted phenyl moiety, but the sub-
stitution of the indolinone ring system (for example, in the
fifth position) results in loss of activity (9a*’—g). Com-
pounds containing 4-hydroxyphenyl moiety were also active
(9¢,d), but in this case, introducing an electron withdrawing

tolerated. Substituted semicarbazide derivative of isatin also
showed good inhibition (9b), but substitution of the isatin
core decreased the activity (9f, 9h>?).

Oxalylamide Derivatives (10a—i).>* It is not obvious which
scaffold can represent the most active compounds because
there are inactive and active examples in each of the three com-
pound groups. Dihydroxyphenyl and hydroxymethoxyphenyl
substituents are beneficial especially in the symmetrical cases.
Replacement of a nitro group by an amino and of a hydroxy
group by a methoxy can increase the activity (10h—d, 10g—d).

Benzo[4,5]thieno[3,2-d]pyrimidine Derivatives (11a—i). All
of the tested compounds have an amino group attached
directly to the tricyclic core, e.g., 11¢;>> however, only
those (11a, 11b) that contain an additional amino sub-
stituent on the aniline moiety were found active. In this
case any other type of substitution resulted in inactive
compounds.
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Figure 3. Chemical structures of the selected and examined hit compounds.

Figure 4. Pharmacophore model: pharmacophore features of hy-
drogen bond donors, acceptors (green meshed balls) and aromatic
rings (red meshed balls). Three different structures are shown
(6a dark grey, 7c blue, 10d light blue).

The H,O,/Tyr/LPO cellular assay is based on the indirect
measurement of the quantity of the produced H,O,. Reduc-
tion in the number of viable cells and disintegration of
produced H,O, can also cause decreased H,O, concentra-
tion. To exclude these false positive results, two additional
types of experiments were performed. The luminescent cell
viability assay enabled us to identify compounds with cyto-
toxic effect. Compounds 9a, 10a, 10e, 11b, 13, 14, 18
(marked with footnote f in Table 1) proved to be effective
mainly through the reduction of the number of viable cells
instead of the NOX4 enzyme inhibition. In our further experi-
ments the HEK 293 FS cells were substituted with 3 uM H,O,
because it was comparable to the FI values (~20000 cps) of the
positive control of our previous H,O,/Tyr/LPO cellular assay
experiments. Having tested the hit compounds in this H,O,
assay, we could exclude 7f, 8¢, and 15, which we considered as

false positives (marked with footnote e in Table 1). These mole-
cules showed “inhibitory effect” in the absence of cells (NOX4
enzyme).

Conclusion

Although numerous natural or synthetic NOX inhibitors
have been described recently, the currently available small-
molecule NOX inhibitors have low selectivity and potency,
precluding a pharmacological demonstration of NOX as
therapeutic targets in vivo.'*

The 3D structure of the NOX4 enzyme is unknown, and
the structures of the active compounds are very different;
therefore, we mapped the common pharmacophore points
of the inhibitors. The best hit molecules were used to build
the pharmacophore model, and Schrédinger modules®®
were used to create the 3D structure of the compounds.
Four pharmacophore points have been found which are
demonstrated in Figure 4. The green meshed balls mark the
hydrogen-bonding donors and acceptors. These aromatic
hydroxyl groups can be found in most of the inhibitors.
Other important features are the two aromatic—hydro-
phobic interaction regions, located 6.5—7.1 A from each
other. These points seem necessary for the NOX4 inhibitory
effect because they can be found in most of the tested
compounds.

In this study we show for the first time that pathologically
relevant selective NOX4 inhibitors can be developed. In
addition, we selected a series of novel compounds that effi-
ciently inhibit H,O, formation and may provide a novel
strategy to treat ROS derived endothelial dysfunction.
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